
Public Health Effects of Ecosystem Degradation:
Evidence from Deforestation in Indonesia ∗

Teevrat Garg†

September 12, 2014

Job Market Paper

Abstract

Despite growing concern about the effect of environmental degradation on human
health, little effort has been made to quantify the effect of ecosystem damage on the
incidence and burden of infectious diseases. Using village-level panel data and satel-
lite data on forest cover, I find that deforestation between 2001-2008 in Indonesia can
explain 360,000-880,000 additional malaria infections. The evidence is consistent with
an ecological response and the effect of deforestation on malaria cannot be explained
by post-deforestation land use change, anti-malarial programs or migration. The effect
is specific to malaria, with deforestation having no discernible effect on other diseases
whose disease ecology differs from that of malaria. Back of the envelope calculations
suggest that the local health benefits from avoided deforestation are 6-31 times the
global carbon benefits underscoring a large, yet previously ignored and unquantified
cost of deforestation.
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1 Introduction

In addition to the large costs of morbidity and mortality, infectious diseases result in lower

economic growth (Acemoglu and Johnson, 2007; Bleakley, 2007; Well, 2007; Gallup and

Sachs, 2001), lower educational outcomes (Barreca, 2010; Cutler et al., 2010; Lucas, 2010;

Miguel and Kremer, 2004) and declining fertility (Lucas, 2013). The most widespread of these

diseases, malaria, affects 300-500 million people each year, half of whose victims are children

under the age of five (Lucas, 2010; Sachs and Malaney, 2002), disproportionately affecting

poor and vulnerable populations (Ngonghala et al., 2014). Many papers have discussed

interventions that can reduce the incidence of such diseases in poor countries (Ashraf, Berry

and Shapiro, 2010; Cohen and Dupas, 2010; Hoffmann, 2009; Hoffmann, Barrett and Just,

2009). Yet, even as quantifying the links between environmental factors (eg. air pollution)

and human health and well-being has become a central component of the modern research

agenda in environmental economics (Graff Zivin and Neidell, 2013; Greenstone and Jack,

2013), little effort has been made to understand the effect of ecosystem degradation on the

spread of infectious diseases. This void in research is important to fill since increasingly,

interventions dependent on insecticides and anti-malarial drugs are likely to be limited in

their effect as a result of increasing resistance of disease-carrying vectors and pathogens, and

environmental and natural resource management will be essential in controlling the incidence

of infectious diseases (Lindsay and Birley, 2004).

In this paper, I provide the first causal evidence linking deforestation to malaria. In

theory, deforestation can affect malaria through several channels. First, post-deforestation

land use change in the form of agricultural activity and urbanization has been associated
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with malaria. Second, migrants can act as latent hosts of malaria since they typically have

lower incomes and less access to medical facilities than native populations and deforestation

often drives migration in poor countries. Third, deforestation can alter the disease ecology of

malaria. In particular, deforestation results in accumulation of water puddles and reduction

in biodiversity, both of which favor the growth of anophelene larvae (Pattanayak and Pfaff,

2009; Patz and Olson, 2006; Patz et al., 2000; Walsh, Molyneux and Birley, 1993). While

the first two mechanisms are socio-economic in nature, the third is purely ecological. In this

paper, I provide evidence that there is a pure ecological response in the effect of deforestation

on the incidence of malaria.

Using variation in deforestation and a rich village data set from Indonesia, I find that

deforestation has a statistically significant impact on the incidence of malaria 1. In particular,

there are three key findings. First, for the average within-sample loss in forest cover (1000

Ha) in a district, there is a 2% - 4.6% increase in the probability of a malaria outbreak in

each village in that district, which translates to about 45,000 - 110,000 additional infected

individuals in Indonesia each year. Second, the effect of deforestation on malaria is largely

concentrated in villages within or near forests, emphasizing the local nature of the health

externalities, in sharp contrast to the global nature of the carbon externalities. Back of the

envelope calculations suggest that the health cost of deforestation is between $123 - $610 per

hectare compared to the carbon benefits of $20 per hectare2. Third, the observed effect is

1Indonesia is an ideal setting for such a study. It contains the third largest stand of tropical forest in the
world experiences the highest rate of deforestation in the world (Margono et al., 2014). Between 2001-2008,
Indonesia saw 4.8 million hectares of forest cover loss. In fact, deforestation in Indonesia makes it the third
largest producer of greenhouse gasses worldwide, behind the US and China (Burgess et al., 2012). At the
same time, malaria poses a major public health risk. The WHO estimates that 44% of the population in
Indonesia, over 130 million people, is at risk of malaria infection (Elyazar, Hay and Baird, 2011)

2See Nature (2009); Honorine (2010). The World Bank estimates that Indonesia’s 1 million square
kilometers of forest cover could earn Indonesia between $400 million - $2 billion through carbon credits.
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much more pronounced in forests intended to preserve biodiversity, than in forests which are

for the purpose of logging and land use change. Furthermore, the effect can not be explained

by common reasons provided in the public health literature, such as post-deforestation land

use change, anti-malarial programs or migration, suggesting that the underlying mechanism

is an ecological as opposed to a socio-economic response.

Despite forests forming a critical part of the environment and ecosystems in poor com-

munities, achieving causal identification of the effect of deforestation on infectious diseases

has been difficult (Pattanayak et al., 2006) 3. There are two major identification concerns.

First, there could omitted variables bias associated with road access, occupational choice4,

poverty levels5, geographic features, sanitation facilities, medical facilities, and agricultural

activity. Second, deforestation could be endogenous to malarial outbreak through reverse

causality or simultaneity if malarial outbreak affects workers’ choice to clear forest through

reduced availability of healthy labor.

A major contribution of this paper is to overcome these challenges and provide causal

identification of the effect of deforestation on the incidence of malaria by building on im-

portant prior research in the public health literature (Bauch, Pattanayak and Sills, 2014;

Laporta et al., 2013; Myers et al., 2013; De Silva and Marshall, 2012; Pattanayak and Pfaff,

2009; Yasuoka and Levins, 2007; Patz and Olson, 2006; Patz et al., 2000). I employ panel

That translates to $4-$20 per hectare.
3Reviews of the epidemiology and public health literature by Keesing et al. (2010) and Pongsiri et al.

(2009) examine case studies on the links between biodiversity loss and local disease ecology. Both reviews
illustrate and recognize that aside from lab experiments that produce limited results, field studies in this
area have been largely correlational case studies.

4Individuals working in the forestry sector could have increased exposure to vectors in the event of
deforestation.

5Deforestation could either result in exploitation of local population or provide local economic windfalls
and could thus influence vulnerability to diseases through income and access to medical facilities.
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methods by exploiting satellite data on forest cover and a rich village census data on disease

outbreaks to control for time-invariant geographic, climatic and demographic factors that

could be correlated with both deforestation and diseases. This allows me to identify the

effect of deforestation on malaria off of the timing of deforestation (and not whether or not

a village experienced deforestation) that is plausibly exogenous to local disease outcomes.

Administratively most deforestation decisions are made at the district level or at the na-

tional level in consultation with district heads.6. All forested land in Indonesia is owned

by the government, and as such, all legal and illegal deforestation in Indonesia requires the

implicit or explicit consent of the district head (bupati). Since each district comprised of

over 250 villages on average, it is unlikely that decisions to grant licenses or to acquiesce to

illegal deforestation by the district head were contingent on malarial outbreaks in specific

villages. As such, district-level deforestation in the Indonesian context is plausibly exogenous

to village-level disease incidence.

I test this assumption in a few ways. First, I provide placebo tests and show that the effect

is specific to malaria. If there were unobservables correlated with health and deforestation,

then deforestation would also have an impact on other diseases whose disease ecology differs

from that of malaria. Second, I use exogenous variation generated from two national policies:

a) the introduction of a timber certification program aimed at curtailing illegal exports of

raw logs and b) the national moratorium on district splitting that temporarily halted the

creation of new districts, altering the political economy of deforestation (Burgess et al., 2012).

Third, I provide falsification tests for these national level policies and show the effects are

6Indonesia has many levels of governance. The country is divided into 32 provinces (propinsi) which
are further divided into districts (kabupaten). Districts are subdivided into villages (desa). There is also a
sub-district (kecamantan) level of administration that is responsible for implementing some welfare programs.
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specific to the year in which they were implemented. Fourth, I show that the results are

robust to the inclusion of a variety of controls including health care access, poverty measures,

distance from cities, sanitation facilities, population density, government sponsored health

interventions, geographic terrain, precipitation and primary sector of employment.

This paper also contributes to the economics literature on the health and mortality effects

of environmental degradation. This literature has made great advances in causal identifica-

tion of the effect of air pollution on infant mortality (Currie and Walker, 2011; Jayachandran,

2009; Currie and Neidell, 2005; Neidell, 2004; Chay and Greenstone, 2003), adult mortality

(Ziebarth, Schmitt and Karlsson, 2014), productivity (Graff Zivin and Neidell, 2012; Hanna

and Oliva, 2011) and educational outcomes (Currie et al., 2009).7 However, the focus has

been almost exclusively on air pollution with much less attention paid to understanding the

health effects of other forms of environmental degradation such as deforestation. This pa-

per fills that important void; to the best of my knowledge the economics literature has not

previously addressed the causal impact of deforestation on health or disease outcomes.

This research has strong policy implications for payments for ecosystem services (PES)

(Jayachandran, 2013; Alix-Garcia et al., 2013; Alix-Garcia, Sims and Yanez-Pagans, 2013;

Golden et al., 2011; Alix-Garcia et al., 2009; Andam et al., 2008; Jack, Kousky and Sims,

2008; Angelsen and Wunder, 2003; Foster and Rosenzweig, 2003; Angelsen, 1999; Angelsen

and Kaimowitz, 1999; Koop and Tole, 1999; Barbier, 1997; Ferraro and Kramer, 1997).

7Several authors have made use of quasi-experimental methods. For instance, Chay and Greenstone
(2003) used the geographic variation in air particulate matter induced by the 1981-82 recession to show that
reduced air pollution led to decreases in infant mortality to the tune of 2500 fewer deaths per year. Currie
and Walker (2011) study the introduction of electronic toll collection to show that reduced pollution through
decreased traffic congestion resulted in lower incidence of prematurity and low birth weight amongst mothers
within two kilometers of a toll plaza in NJ and PA. Jayachandran (2009) exploits exogenous variation in air
pollution from forest fires in Indonesia to demonstrate a large effect of smoke on infant mortality.
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First, health benefits exceed carbon benefits, particularly in light of recent evidence that

the carbon footprint of deforestation may be as low as 25% of previous estimates (Harris

et al., 2012). Second, the health benefits are local in nature, in sharp contrast to the carbon

benefits that are global. Since the local health benefits exceed the global carbon benefits,

PES programs, such as Indonesia’s recently launched Rainforest Standard (RFS), may not

require large external funding to avoid deforestation and instead motivate local institutions

to promote conservation (JakartaPost, 2014).

This paper is organized as follows. Section 2 provides context for deforestation and the

implications for the disease ecology of malaria, and section 3 describes the data. Section 4

discusses the identification strategy. Estimation results are presented in section 5. Section

6 considers alternative explanations and mechanisms and section 7 concludes and draws out

policy-relevant findings.

2 Background

While its tropical conditions are ideal for forest growth, Indonesia has been experiencing

alarmingly high rates of deforestation. Burgess et al. (2012) provide a conservative estimate

that between 2001 and 2008, Indonesia lost about 4.8 million hectares of forest cover, which is

roughly the size of the US states of Vermont and New Hampshire combined. This coincides

with a period of high rates of contracting infectious diseases. In this section, I provide

background on the nature of deforestation as well as its implications for the spread of malaria.
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2.1 The Political Economy of Deforestation in Indonesia

During the Suharto era, the national government maintained total control of the forest estate

and concessions were awarded to a small group of forestry conglomerates in the production

and conversion zones for the purposes of logging and clearing of forested land for indus-

trial and palm oil operations respectively. Since the conglomerates had connections to the

Suharto government and because the permits lasted up to 30 years, they had strong incen-

tives to conduct logging selectively and sustainably. Logging was prohibited in all other zones

that were designated for watershed protection (protection forest) and biodiversity protection

(conservation forest) (Barber, 1990). However, after the fall of Suharto regime, the national

government passed the decentralization laws that amongst other things, made district forest

departments part of the district government, answerable to the head of the district (Burgess

et al., 2012).8

60%-80% of all deforestation in Indonesia is illegal (CIFOR, 2004). To a large extent,

the onus of authorizing, monitoring and enforcing9 limits on logging (legal and illegal) falls

on the district office. District office employees are supposed to stationed at the gate of

every concession to monitor all logs leaving the concession, and at the entrance of all saw

mills to check the legality of logs entering the mill. Furthermore, all logs require transport

permits from the district office that are verified at regular checkpoints. Thus the extraction,

transportation or processing of illegal logs would be impossible without the district office

8The district governments also became incredibly powerful. They were granted considerable autonomy
over their jurisdiction and 25% of revenues from natural resources in a district were returned to the district
governments as block grants.

9Burgess et al. (2012) demonstrate that illegal deforestation can not be explained by lack of enforcement
capacity since the impact of new districts on deforestation rates increases over time. If lack of enforcement
capacity was driving deforestation, the effect of new districts would decrease over time since newer districts
would be able to build up enforcement capacity.
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acquiescing to such activity (Burgess et al., 2012). In a production forest, the district head

may issue permits for logging up to the point of the nationally sanctioned limit, and has

the responsibility to ensure that only legal deforestation occurs. In the case of conversion

forests, the district government petitions the central government to convert forest land to

other uses, such as palm oil plantations, and is responsible for monitoring conversion to

ensure that it occurs only in approved areas. In protection and conservation forests, all

deforestation activity is illegal. These forests are biodiversity reserves and come under the

control of the central government. But the district office is responsible for patrolling these

forests to ensure no illegal logging takes place. The ecology of production/conversion forests

is distinct from that of protection/conservation forests in part due to historical logging, but

the political economy of deforestation is largely similar across the different forest zones.

2.2 Implications for Malaria

Malaria is spread only through the Anopheles mosquito and transmission occurs only if the

mosquito was previously infected through a blood meal taken from an infected person10.

Subsequently the malarial parasites from the first blood meal are mixed in with the saliva

of the mosquito and then transmitted into the person being bitten. The typical lifespan of

the female Anopheles is 4-6 weeks, but they can travel distances as far as 75 miles, making

the the range of transmission particularly problematic. In Indonesia, malaria is widespread

with 44% of the population, or over 130 million people, at risk of contraction (Elyazar, Hay

and Baird, 2011). In any given year, 19% of Indonesian villages report having an outbreak

of malaria.

10See: http://www.cdc.gov/malaria/about/faqs.html
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Pattanayak and Pfaff (2009) review potential mechanisms through which deforestation

can impact the growth of anopheline larvae and consequently the incidence of malaria. First,

post-deforestation land use change in the form of urbanization, construction and agricultural

production has been associated with increased incidence of malaria (De Silva and Marshall,

2012; Petney, 2001). Second, deforestation commonly results in migration, which often

increases the incidence of malaria for two reasons - migrants act as latent hosts for infectious

diseases, acting as transport from an infected area to a non-infected area (Texier et al., 2013)

and migrants tend to have limited access to medical facilities. These are socio-economic

factors behind the link between deforestation and malaria but there is also an ecological

link. Deforestation also alters the disease ecology of malaria. This occurs in two ways. First,

cleared lands receive more sunlight and are more susceptible to the formation of puddles

with a more neutral pH that favors anopheline larvae development (Pattanayak and Pfaff,

2009; Patz and Olson, 2006; Patz et al., 2000; Walsh, Molyneux and Birley, 1993). Second,

deforestation adversely affects biodiversity of the region and increases malaria incidence by

favoring the proliferation of malaria related species by reducing or eliminating species that

prey on anopheline larvae. The evidence is bi-directional; increased biodiversity also reduces

malaria incidence through dilution of disease carrying vectors in the overall species pool in

forest ecosystems (Laporta et al., 2013; Yasuoka and Levins, 2007).
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3 Data

3.1 Disease and Public Health

The Indonesian statistical agency, Badan Pusat Statistik (BPS) conducts a village census

Podes every 2-3 years that documents a range of village characteristics and events including

the incidence and extent of disease outbreaks for malaria, measles, respiratory infections,

dengue fever and diarrheal diseases. The survey includes all of Indonesia’s over 68,000

villages. During the period of study, Podes was conducted in 2000, 2003, 2006, and 2008.

Village heads report on whether or not there had been an outbreak of each of these diseases

in their village, and if there was an outbreak how many people died. For 2000, 2003 and

2006, no information was collected on the number of people who were infected with malaria.

Starting in 2008, the survey also requested information on the number of people infected

with malaria distinct from the mortality associated with malaria. In 2008, on average, 14-

15 people were infected with malaria in a village that reported an outbreak of malaria. 11

The standard deviation was 20 people. This translated to just over 15 infected persons per

thousand persons with a standard deviation of 26 infected persons per 1000 persons.

Podes also contains information on the availability of medical facilities including hospitals,

integrated health centers, village medicine posts and drug stores in a given village. When

such a medical facility is not present in the village, the survey documents the distance to

the nearest facility (in kilometers) and how easy it is to access such a facility on a scale of

1-4. This rich data set also includes information on the source of drinking water, sanitation

11The data is collected through oral recall from village heads and is then verified at the sub-district office.
The village head makes a subjective decision on whether or not there was an outbreak in a given year. A
kernel density graph of the number of infected individuals conditional on an outbreak is available in the
appendix.
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facilities, transportation facilities, land utilization, geography (proximity to the shore, forests

etc.) and topography (flat, hilly or valley). Tables 1 - 4 show the summary statistics of the

key dependent and independent variables.

3.2 Deforestation Data

Since a large portion of the deforestation in Indonesia results from illegal logging, official

records are likely inaccurate. Therefore, I use deforestation data from 2001-2008 based

on satellite imagery data directly from Burgess et al. (2012). Deforestation is measured

as the number of pixels (250m X 250m) in each district estimated from MODIS satellite

images that have at least a 90% probability of tree cover loss compared to the previous

year. The variable is converted into 1000s of hectares. While the Indonesian archipelago is

comprised of a large number of islands, we focus on the four islands that have substantial

forest cover: Sumatra, Kalimantan, Sulawesi and Papua. The remaining islands are excluded

since they had negligible forest cover in the baseline year of the study (2000). The key data

improvement from previous economic research on deforestation using satellite data (Foster

and Rosenzweig, 2003) is building on the Normalized Difference Vegetation Index (NDVI)

(Tucker, 1979) by also making use of differences in spectral signatures between trees and other

crops (Jensen, 1996). The deforestation data are then classified by the zone and district of

the forest estate into production, conversion, protection or conservation forest (categories

defined below). The resulting variable is TotalDeforestationzdt which measures thousands

of hectares deforested in forest zone z, in district d at time t.
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4 Estimation and Identification Strategy

There are two key parameters of interest. First, what is the effect of deforestation on the

probability of malarial outbreak (i.e effects at the extensive margin)? Second, what is the

effect of deforestation on the number of malaria deaths conditional on the village having an

outbreak of malaria (i.e effects at the intensive margin)?12 This section explains my strategy

for generating plausible estimates of these causal effects.

4.1 Extensive Margin

Since the primary dependent variable is binary (whether or not there was a disease outbreak

in the past year), I use a linear probability model13 in the baseline specification. The primary

specification is,

Pr[diseasevdt = 1] =β0 + β1TotalDeforestationdt

+ β2Xvdt + µd + ηit + εvdt (1)

The dependent variable diseasevdt denotes whether or not there was a disease outbreak in

village v in district d at time t and TotalDeforestationdt is the total deforestation in district

d at time t, a continuous variable measured in thousands of hectares. Xvdt is a vector of

controls including access to medical facilities, terrain and geography, altitude, sanitation

12Ideally, the intensive margin of study would be the number of individuals infected. However, those data
are unavailable for all years prior to 2008, and so the village-level intensive margin being studied is the
number of individuals dying from malaria. These characterizations would be different at the individual level,
where a person getting infected would mark the extensive margin, and how much they suffer as result of
malaria, including mortality, would mark the intensive margin.

13In the appendix, I demonstrate the robustness of the baseline results to the use of logit or probit models
in place of a linear probability model. I further demonstrate that only 3% of all predicted values lie outside
the feasible [0,1] bounds under the LPM. My results are robust to the exclusion of these data points.
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and trash disposal facilities, dominant fuel source, rainfall average and rainfall variation,

dominant occupation in the village as well as the interaction effects of occupation-year,

occupation-province fixed effects, forest zone, forest zone-year and forest zone-province fixed

effects. These controls are not included in the primary specification (1) but are included

in extensions to the primary specification (Table 5, Columns 3-4). µd is the district-level

fixed effect, ηit is the island - year fixed effect and εvdt is the regression residual. Standard

errors are clustered at the district level to allow for arbitrary correlation within a district

and over time accounting for spatial autocorrelation and serial correlation. I also include

population density (population/total area) and number of other villages in the district that

had an outbreak of malaria in that year to control for size of district effects and possible

spill-over effects.

β1 (extensive margin) is the parameter of interest, and there are two problems in its

consistent identification: a) omission of key within-district time-varying variables that are

correlated with both deforestation and malaria may generate omitted variable bias, and b)

malaria may be a factor in the decision to cut down trees resulting in reverse causality

or simultaneity bias. The challenge is finding a plausibly exogenous source of variation

in deforestation that minimizes these prospective sources of bias, without removing crucial

context that is necessary to test for a biophysical mechanism and provide policy-relevant

results. Identification is achieved using panel data methods using district fixed effects and

island-year fixed effects, relying on the plausible assumption that the timing of deforestation

is exogenous to local disease outcomes conditional on observables.

This assumption is justified for a few reasons. First, and as discussed in the previous

section, all legal and illegal deforestation in Indonesia requires the implicit or explicit consent
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of the district government. Each district comprises over 250 villages, on average, making it

unlikely that decisions by the district head to grant licenses or acquiesce to illegal deforesta-

tion were contingent on malarial outbreaks in specific villages. Second, the use of satellite

deforestation data at the 250mX250m resolution means that any smallholder deforestation

would have to be both large enough to be noticed and agreed upon by village heads and

district governments. That too seems very unlikely. Third, the process of obtaining permits

or getting authorization on plans to convert forest land from the national government is

a cumbersome bureaucratic process which can last several years between when a permit is

requested and when it is granted. Fourth, there were two major national level policies that

altered the political economy of deforestation: a) the introduction of a timber certification

program aimed at curtailing illegal exports of raw logs and b) the national moratorium on

district splitting that temporarily halted the creation of new districts (Burgess et al., 2012).

It is highly unlikely that these policies were introduced as a result of local level disease

outbreaks.

Furthermore, I test these assumptions in a few ways, and the results of these tests are

discussed in section 5. First, I use placebo tests by estimating the effect of deforestation

on other diseases whose disease ecology differs from that of malaria. If there were unob-

servables correlated with health and deforestation, then deforestation would also have an

impact on other diseases whose disease ecology differs from that of malaria. Second, I show

that the interaction of deforestation with the timing of these national policies is driving the

core result. Third, I provide falsification tests for these national level policies and show the

effects are specific to the year in which they were implemented. Fourth, I show that the

results are robust to the inclusion of a range of control variables that are known to impact
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malaria including health care access, poverty measures, distance from cities, sanitation fa-

cilities, population density, government sponsored health interventions, geographic terrain,

precipitation and primary sector of employment (Pattanayak and Pfaff, 2009).

4.1.1 Logging Ban Enforcement

In the post-Soeharto era, between 1998 and 2001, Indonesia reduced export taxes on logs

from 200 percent to 10 percent, resulting in massive exports of logs. At the end of 2001,

Indonesia banned all log exports and in late 2003 introduced the SVLK (Timber Legality

Verification System) certification to ensure the legality of traded timber (JakartaPost, 2013).

Since the policy and enforcement was nationwide, I interact the enforcement of the log export

ban with deforestation to introduce exogenous variation in deforestation driven by a national

policy. The resulting specification is,

Pr[diseasevdt = 1] =β0 + β1TotalDeforestationdt ∗ PostLogExportBant

+ β2TotalDeforestationdt + β3Xvdt + µd + ηit + εvdt (2)

Since the policy was implemented nationwide, identification of β1 in this specification rests on

the assumption that the timing of the implementation of the national policy was uncorrelated

with differential levels of malarial prevalence among districts within an island in Indonesia.

Specifically, when we include both the interaction term, and deforestation in the regression,

finding a statistically significant β1 estimate and a statistically insignificant β2 estimate would

suggest that identification is being driven by exogenous variation in deforestation following

the enforcement of a national policy impacting the forest sector.
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4.1.2 Moratorium on District Splitting

In 1999, Indonesia passed the decentralization laws that came into effect in the beginning of

2001. The dramatic decentralization, in the wake of the end of the Soeharto era, provided

substantial autonomy to district governments, including returning 25% of all natural resource

revenues as block grants. In addition, districts in Indonesia were split or carved into smaller

districts, with each district having its own elected district head. In 2008 (2000) Indonesia

had 483 (292) districts, with 312 (189) districts in 2008 (2000) in the four major islands

included in this study. However, between 2004 and 2007 there was a national moratorium on

further district splitting. Burgess et al. (2012) show that this district splitting increased the

competition amongst district heads to provide logging rights (legal and illegal). Therefore,

I create indicator variables for the start and the end dates (2004 and 2007 respectively) of

the moratorium and individually interact those indicator variables with deforestation and

add the resulting variables to the original specification in equation (1).14 The resulting

specification is,

Pr[diseasevdt = 1] =β0 + β1TotalDeforestationdt ∗MoratoriumStartt

+ β2TotalDeforestationdt ∗MoratoriumEndt

+ β3TotalDeforestationdt + β4Xvdt + µd + ηit + εvdt (3)

Since the moratorium was implemented nationwide, identification of β1 and β2 in this speci-

fication rests on the assumption that the timing of the implementation of the national policy

was uncorrelated with differential levels of malarial prevalence among districts within an

14MoratoriumStart = 1 between 2004 and 2007, MoratoriumEnd = 1 after 2007
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island in Indonesia. Specifically, when we include the interaction terms, and deforestation in

the regression, finding a statistically significant β1 or β2 estimate and a statistically insignif-

icant β3 estimate would suggest that identification is being driven by exogenous variation in

deforestation following the moratorium.

4.2 Intensive Margin

The second variable of interest is the number of malaria deaths in a given year conditional

on there being an outbreak of malaria in that village. I estimate an equation similar to (1),

MalariaDeathsvdt =γ0 + γ1TotalDeforestationdt

+ γ2Xvdt + µd + ηit + εvdt (4)

where γ1 is the parameter of interest, MalariaDeaths is the number of malaria deaths in

village v of district d at time t, and as in the case of (1) I estimate the fixed effects model.15

In addition, since the number of malaria deaths is a count variable, I check the robustness of

the fixed effects estimates of (4) to re-estimation using a fixed effects poisson model estimated

via maximum likelihood and to a fixed effects negative binomial model.

5 Results

The main result of this paper is that deforestation increases malarial incidence. The central

result is that the average within sample deforestation of 1000 hectares in a district increases

15I run the same specification with “malaria deaths per 1000 persons” as the dependent variable. The
results are qualitatively similar, and reported in the appendix.
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the probability of malarial outbreak in each village in that district by 0.36 percentage points

(Table 5, column 4). I treat this as the baseline result. Using the sample average of the

probability of malarial outbreak of 0.19, I find that 1000 hectares of deforestation in a district

increases the probability of malarial outbreak in each village in that district by 2%. The

effect is robust to the inclusion of a wide range of controls and to alternative estimation

methods. This estimated effect in the robustness checks (table 7) range from 3.3% - 4.6%

suggesting that 1000 hectares of deforestation in a district increase the probability of malaria

outbreak in each village in that district by 2% - 4.6%.

This range of effects on malaria outbreak, using back of the envelope calculations and

average infections per outbreak from the 2008 Podes data, translate to 45,000 - 110,000

additional infections each year. Over the 8-year course of the study that is 360,000 - 880,000

additional person-year infections. I then use estimates on average time loss due to malaria-

induced morbidity (1.5-3 weeks) and measures on value of statistical life ($3.7 million) to

estimate the morbidity associated health cost per hectare of deforestation in the range of

$123 - $610. These estimates are 6-31 times the carbon benefit associated with avoided

deforestation ($20 per hectare).

5.1 Placebo Tests

Different diseases have different disease ecologies and as such different mechanisms of trans-

mission. For instance, measles is an airborne disease, while diarrhea is a water-borne disease.

I use incidence data on other diseases to perform placebo tests of the core result and the

underlying mechanism. In particular, I explore the relationship between deforestation and
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four other diseases and classes of diseases, namely dengue, measles, diarrhea and respiratory

diseases using specification (4) from table 5. As shown in table 6, there is no discernible

effect of deforestation in the previous year on the incidence of the other diseases. The lack of

any observable effect of deforestation on dengue, measles, diarrhea and respiratory diseases

suggests that omitted variables, that could be correlated with both deforestation and health,

are not a threat to the internal validity of the central result or the underlying biophysical

mechanism. The lack of a discernible effect of deforestation on dengue may superficially ap-

pear inconsistent with the core result since dengue is also spread via disease carrying vectors,

particularly the Aedes Aegypti mosquito. However, the Aedes Aegypti mosquito, unlike the

female Anopheles mosquito that carries malaria, has a lifespan of only 2-4 weeks and travels

a maximum of 500m(<1/3 of a mile; 1 hectare = 10, 000m2) (Anopheles can travel up to 75

miles) during its entire lifetime. This short lifespan and travel-span limit the mechanism of

exposure to dengue since the average within-sample deforestation in this study is just over

1000 hectares per district.

The placebo tests underscore the consistent identification of β1 in equation (1), since any

upward bias generated as a result of omission of variables correlated with human health and

deforestation (eg. political economy variables such as corruption, favoritism, etc.) would

also show up in the effect of deforestation on other diseases.

5.2 Falsification Tests

In table 7, I demonstrate the robustness of the central result presented in table 5. First, the

interaction of deforestation with the enforcement of the log export ban has a 0.87 percentage
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point effect on the probability of malarial outbreak. Within the sample of this study, the

average deforestation in a district (following the logging ban enforcement) increases the

probability of malarial outbreak by an estimated 4.56% in every village in that district. The

coefficient estimate on deforestation uninteracted is statistically insignificant. The credibility

of this result is further strengthened when a “false” year for the enforcement of the log

export ban is used instead of the actual year. Specifically, I create a dummy variable that

assumes that the certification was introduced in 2006 instead of 2003 and interact that

dummy variable with deforestation. The interaction term’s coefficient becomes statistically

indistinguishable from zero, and the deforestation coefficient has a remarkably similar point

estimates to the fixed effects result from table 5 and is statistically significant at the 5% level

(table 7, column 2).

Next, I use the start and end dates of the district splitting moratorium (2004 and 2007

respectively) to introduce exogenous variation in deforestation. The coefficient of deforesta-

tion interacted with the start of the moratorium is similar to the core fixed effects result and

is statistically significant at the 1% level (table 7, column 3). Finally, there are no lead or

lagged effects (one lead, one lag) and I find no evidence for non-linearity (results for various

non-linear specifications are shown in the appendix).

5.3 Type of Forest and Proximity to Forest

In this sub-section, I provide evidence that the underlying mechanism linking deforestation

to malarial outbreak appears ecological and is likely driven by reduced biodiversity. First, I

disaggregate results by the type of forest in columns (1) and (2) of table 8. As mentioned in

21



the section 2.1, production and conversion forests are where legal (and illegal) deforestation

take place and are demarcated as such for the purposes of logging and land use change,

respectively. Conversely, conservation and protection forests are designated as biodiversity

reserves where all deforestation is illegal. Upon disaggregating the results by the type of

forest, I find that the effect is largely concentrated in protection and conservation forests

and is four times larger (0.0136 percentage points v. 0.00149 percentage points) than the

effect when all forest types are considered. If the underlying mechanism was socio-economic

then there would be no reason to expect different effects across different forest types since the

major distinction between the forests is that one set is meant for (managed) clearing and the

other set is demarcated for biodiversity protection. Because there is a substantial difference

in the magnitude (and statistical significance) of the effect on malaria of deforestation across

these different forest types, it is likely that the underlying mechanism is an induced ecological

response.

Second, I disaggregate results by villages that are classified as “inside” and “on the bor-

der” of forests from villages classified as being “away” from forests 16. These results are

shown in column (3) and (4) of table 8. As is consistent with the maintained hypothesis, the

effect is concentrated in villages inside or near forests. The effect in villages away from the

forest is statistically indistinguishable from zero and less than half the magnitude of the esti-

mated effect inside or near forests (0.00647 percentage points v. 0.00291 percentage points).

This result supports the hypothesized mechanism since deforestation induced Anopheline

growth is likely to have a larger impact on villages inside or near forests than those further

16This characterization of the location of the village relative to the forest is provided by village heads and
then verified at the district or sub-district office.
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away from them because of proximity to growth sites.

5.4 Intensive Margin

The nature of the secondary data used in this paper allows us to study the effects of de-

forestation on malaria at the both the extensive and intensive margins. Deforestation, if it

alters the local disease ecology of malaria, should change the rates of exposure and hence

the likelihood of contracting malaria. However, once a person or group of persons have

contracted malaria, changes in vector concentration should not impact whether a person

survives malaria since that would depend on availability and access to medical facilities.

Therefore, if the underlying mechanism linking deforestation to malaria is an ecological one,

then deforestation should have a direct impact on the contraction of infection (extensive

margin) but conditional on medical facilities and other covariates, should not have a sizeable

impact on the number of malaria related deaths (intensive margin).

Consistent with this hypothesis, I find a robust result at the extensive margin (as reported

in section 5.2) but no economically meaningful effect at the intensive margin (table 9). The

absence of evidence of any effect is consistent across the range of fixed effects models and

the poisson (table A.5, column 1) and negative binomial models (table A.5, column 2).

6 Alternative Explanations

In theory, there are three other plausible mechanisms could drive the statistical relationship

between deforestation and the incidence of malaria: 1) urbanization and land use post-

deforestation drive the incidence of malaria, 2) less remote places with no deforestation
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are more likely to receive anti-malarial and insecticide treated nets (ITNs) than those with

deforestation, and 3) increased migration correlated with deforestation could lead to higher

prevalence of malaria since migrants can act as latent hosts of malaria. In this section, I

examine these mechanisms as a test of the internal validity of the core result.

6.1 Post-deforestation land use change

A threat to the internal validity of the core result and the underlying mechanism could be

that it is not deforestation that causes an increased likelihood of malarial outbreak, but

rather the urbanization or land use change (e.g. agriculture, palm oil plantations, etc.) that

follows the clearing of forested land (Keesing et al., 2010). This study takes advantage of the

rich data in Podes and the nature of deforestation in Indonesia to rule out this possibility

in three ways. First, I isolate results based on the type of forests being cleared. If post-

deforestation land use change drives the relationship between deforestation and malaria,

we would observe the effect in production and conversion forests (where forest land can

be legally, with permits, cleared for logging and land use change) and not in protection and

conservation forests (where forest clearing is illegal but still occurs; see Burgess et al. (2012)).

Table 8 shows the exact opposite when I break down the results by forest zoning.

Second, the inclusion of a large number of controls and dummy variables that are likely

correlated with land use change does not alter the central result. In particular, I control for

area under rice cultivation, total forest cover in a given year and dominant occupation (disag-

gregated within agriculture) fixed effects as well as occupation-province and occupation-year

fixed effects.17 This helps remove any spurious correlation that was driven by otherwise

17The dominant occupation of a village was one of eleven different options - crops and plantations, livestock,
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unobserved changes in occupational choices in villages, as well as any idiosyncratic changes

to these occupations in specific provinces or years.

Finally, if urbanization drives the results, we would expect a direct effect on the outbreak

of dengue as well since dengue disproportionately affects urban areas and risk of dengue

increases with degree of urbanization (Bhatt et al., 2013). The lack of any effect on dengue

prevalence suggests that urbanization can not explain the effect of deforestation on increased

risk of malarial incidence.

6.2 Correlation between anti-malarial programs and deforestation

If there is correlation between anti-malarial programs and deforestation in a spatially sys-

tematic manner, in that presumably less remote places with no forests are more likely to

receive anti-malarial devices, services and programs, then the fixed effects estimator will

generate inconsistent results. I address this concern in two ways. First, I disaggregate re-

sults by proximity of villages to the forest (table 8, columns 3-4). When considering only

the set of villages inside or near forests(table 8, column 4), the results are stronger (both

in magnitude and statistical significance) suggesting that such a correlation, if it exists, at

worst downward biases the central result. Second, the central result is robust to controlling

for percentage (table 5, columns 3-4) of the population in each village that receives some

form of welfare payment (poor cards) or subsidized medical care (health cards) making it

unlikely that such a spatially systematic correlation exists that would upward bias the main

finding of this paper.

inland fisheries, marine fisheries, forestry, other agriculture, mining, industry, wholesale/retail, services and
other occupations. Data on percentage of population employed in each sector were unavailable.
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6.3 Migration

A concern with the internal validity of the central result and the underlying ecological mecha-

nism is that increased migration correlated with deforestation could lead to higher prevalence

of malaria because migrants can act as latent hosts of malaria (Texier et al., 2013). This

can be ruled out for a few reasons. First, the placebo tests demonstrate that the effect is

specific to malaria; migrants working in deforestation would have to be carrying malaria and

no other disease. Second, I explicitly test for migration using population and population

density as control variables and find that the result doesn’t change. However, migration

could still bias the core result if conditional on migration rates, migrants to villages experi-

encing deforestation are more likely to carry malaria than those to villages not experiencing

deforestation. This concern can be ruled out for a few reasons. First, the core result re-

mains robust to the inclusion of the dominant occupation in a village and occupation-year

and occupation-province fixed effects. These allow me to control for changes in dominant

occupation specific to a particular province or year that could be correlated with migration

and deforestation.

Second, if the migration hypothesis is true, districts with production and conversion

forests should attract a larger migrant population than districts with protection and conver-

sion forests since average deforestation in production and conversion forests is substantially

(five times) higher than in protection and conversion forests. Thus, if migration were the

underlying mechanism then production and conversion forests would see larger effects of de-

forestation on malaria since they attract more deforestation related migrants. Yet, when the

results are disaggregated by forest zone, the effect is substantially stronger in protection and
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conservation forests, making it unlikely that migration is driving the effect of deforestation

on increased malaria incidence.

7 Conclusion

Every year over 300 million people are affected by malaria and other infectious diseases

resulting in losses in productivity, labor supply, and education as well as increased human

suffering. This paper provides causal evidence on the effect of deforestation on the incidence

of malaria. I find that using within-sample averages, the mean deforestation in a district in

a given year resulted in a 2% - 4.56% increase in the incidence of malaria in every village

in that district. I rule out post-deforestation land use change, anti-malarial programs and

migration as possible explanations for this effect, highlighting the likely ecological response

that drives the effect.

Given the lack of consensus in the political institutions towards action on climate change,

this paper provides further motivation for forest conservation and in particular strong evi-

dence of the direct human health impacts of deforestation. First, the absolute numbers are

large; deforestation in Indonesia over the 8 year period of this study can explain 360,000

- 880,000 additional infected individuals. This represents a sizeable human health cost of

deforestation to the tune of $123 - $610 per hectare. This is substantially larger than the

carbon benefit of avoided deforestation of $20 per hectare. Second, the effect seems more

pronounced in villages closer to forests that those further away highlighting that there are

indeed local benefits to forest conservation in addition to the more often discussed global

carbon benefits. This is particularly important in light of Indonesia’s adoption of the Rain-
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forest Standard (RFS), a payment for ecosystem services program. Third, the concentration

of the effect in protection and conservation forests means that preservation of forest reserves

provides health benefits to local communities. However, these are short term results and

provide motivation for research in to the long term relationship between natural resource

degradation and local public health.
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Tables

Table 1: Fraction of Villages with Disease Outbreaks (Village Level)

(1) (2) (3)
(Yes = 1, No = 0) Full Sample In/Near Forest Away from Forest

Was there an outbreak of malaria? 0.190 0.243 0.169
(0.392) (0.429) (0.374)

Was there an outbreak of dengue? 0.0620 0.0421 0.0702
(0.241) (0.201) (0.255)

Was there an outbreak of diarrhea? 0.176 0.204 0.164
(0.380) (0.403) (0.370)

Was there an outbreak of respiratory? 0.104 0.122 0.0971
(0.306) (0.327) (0.296)

Was there an outbreak of measles? 0.0806 0.0892 0.0771
(0.272) (0.285) (0.267)

Observations 143,305 41,575 101,730

Standard deviations in parentheses. Column 2 shows mean and standard deviation for the
sub-sample of villages inside or on the border of the forest area. Column 3 shows mean
and standard deviation for the sub-sample of villages. These characterizations are made
by the village head and verified at the sub-district office. All row-wise differences between
columns (2) and (3) are statistically significant.
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Table 2: Number of Deaths in a village in a given year as a Result of Disease Outbreaks
(Village Level)

(1) (2) (3)
Full Sample In/Near Forest Away from Forest

Number of deaths from malaria 0.873 0.746 0.945
(5.275) (4.498) (5.670)

Number of deaths from dengue 0.240 0.165 0.282
(2.190) (2.026) (2.277)

Number of deaths from diarrhea 0.779 0.684 0.834
(5.197) (3.915) (5.804)

Number of deaths from respiratory diseases 0.665 0.492 0.765
(5.958) (4.767) (6.541)

Number of deaths from measles 0.341 0.260 0.387
(3.036) (2.639) (3.240)

Observations 12,454 4,531 7,923

Standard deviations in parentheses. Column 2 shows mean and standard deviation for the sub-
sample of villages inside or on the border of the forest area. Column 3 shows mean and standard
deviation for the sub-sample of villages. All three columns only report averages from the sample
of villages that reported an outbreak of that particular disease. All row-wise differences between
columns (2) and (3) are statistically significant.
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Table 4: Key Independent Variables (Village Level)

(1) (2) (3)
Full Sample In/Near Forest Away from Forest

100s of Families Receiving Poor Status Papers 0.308 0.226 0.342
(0.779) (0.674) (0.815)

100s of Families Receiving Health Cards 0.792 0.600 0.870
(1.404) (1.071) (1.511)

Hospital in Village? (Yes = 1; No = 0) 0.485 0.419 0.512
(0.853) (0.813) (0.868)

Ease of Access to Nearest Hospitala 2.610 3.002 2.453
(0.888) (0.840) (0.857)

Population Density 0.00650 0.00142 0.00855
(1000s of person per hectare) (0.0334) (0.00788) (0.0391)
Rice Field Area (1000 Ha) 0.242 0.279 0.228

(1.133) (1.476) (0.960)
Is the village by a river? (Yes = 1, No = 0) 0.711 0.801 0.675

(0.453) (0.399) (0.468)
Elevation Above Sea Level (100 meters) 1.866 2.455 1.629

(4.589) (5.815) (3.964)
Mean Annual Rainfall (1000mm)b 0.0697 0.0728 0.0684

(0.0172) (0.0184) (0.0165)
Standard Deviation in Rainfall (1000mm)b 0.0315 0.0305 0.0319

(0.00956) (0.00901) (0.00974)

Observations 132,676 38,127 94,549

Standard deviations in parentheses. Column 2 shows mean and standard deviation for the sub-
sample of villages inside or on the border of the forest area. Column 3 shows mean and standard
deviation for the sub-sample of villages. These characterizations are made by the village head and
verified at the sub-district office.

a Ease of access defined as follows. 0 = hospital in village, 1 = very easy, 2 = easy, 3 = difficult and
4 = very difficult. These delineations are made by the village head and verified at the district/sub-
district office.

b Rainfall variables calculated over the sample range of 2001-2008.
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A Appendix

A.1 Descriptives of “Outbreak” of malaria

The following is a kernel density plot of the number of infected persons in a village that declared
an outbreak in 2008. The range is 1 to 98.

Figure 1: Kernel Density Distribution of Infections conditional on reported outbreak in 2008

A.2 Choice of Estimator - LPM v. Logit, Probit

The central results are robust to the choice of estimator. Typically, coefficients on logit and probit
estimates are 4 and 2.5 times those from the linear probability models. Table A.1 shows that the
magnitudes are to the order 8.5 and 4.75 for logit and probit respectively. That means that at
best, the linear probability model provides an underestimate of the true effect of deforestation on
disease incidence.

Second, I also check to see the percentage of predicted values that lie outside the (0,1) interval.
Figure 1 shows the kernel density plot. Only 4% of all predicted observations fell outside the range.
My results remain robust to the exclusion of those data points as shown in table A.2.
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Table A.1: Comparison of Results from LPM, Logit and Probit

(1) (2) (3)
Was there an outbreak of malaria in the previous year? LPM Logit Probit

Total Deforestation in the Previous Year (1000 Ha) 0.00287** 0.0246*** 0.0136**
(0.00122) (0.00951) (0.00530)

Observations 100,570 100,262 100,262

Standard errors clustered at the district level in parentheses. Statistical significance is
denoted as *** p <0.01, ** p <0.05, * p <0.1. All specifications include the limited range
of controls in column (3) of table 5. I don’t use the full set of controls in order to reduce
computational time associated with the convergence of logit/probit estimators when using
maximum likelihood. The unit of observation is village-forestzone-year.

Table A.2: Linear Probability Model: Full Sample v. Limited Sample

(1) (2)
Was there an outbreak of malaria in the previous year? Full Sample Limited Sample

Total Deforestation in the Previous Year (1000 Ha) 0.00287** 0.00337***
(0.00122) (0.00122)

Observations 100,570 96,536
R-squared 0.128 0.122

Standard errors clustered at the district level in parentheses. Statistical significance is
denoted as *** p <0.01, ** p <0.05, * p <0.1. All specifications include the limited range
of controls in column (3) of table 5. Limited sample column (2) results are obtained by
reestimating equation in column (1) after dropping observations whose predicted values
lie outside the feasible [0,1] range. The unit of observation is village-forestzone-year.

A.3 Linear v. Non-Linear Specification

In this section, I check the robustness of my linear estimation results to non-linear specifications.
There is no evidence to support the presence of non-linearities. This could be on account of the
relatively short time frame over which we estimate our results.
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Figure 2: Kernel Density Distribution of Predicted Outbreaks: Linear Probability Model

Table A.3: Testing for presence of non-linearities

(1) (2) (3)
Was there an outbreak of malaria in the previous year? Linear Linear Approximation Quadratic

Total Deforestation in the Previous Year (1000 Ha) 0.00364** 0.00365** 0.00384
(0.00154) (0.00153) (0.00479)

Any Deforestation in Previous Year? 0.00294
(0.0124)

Deforestation in Previous Year - Squared -0.0000076
(0.000155)

Constant 0.547*** 0.548*** 0.547***
(0.142) (0.142) (0.142)

Observations 100,570 100,570 100,570
R-squared 0.140 0.140 0.140

Standard errors clustered at the district level in parentheses. Statistical significance is denoted as *** p
<0.01, ** p <0.05, * p <0.1. All specifications include the limited range of controls in column (4) of table
5. Column (1) is the same as Column (4) of 5. Column (2) includes a dummy variable = 1 if there was
any deforestation in the previous year. Column (3) includes a quadratic term. The unit of observation is
village-forestzone-year.
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A.4 Malaria Related Deaths

In this section, I discuss the robustness of the results in equation (4). In particular, I provide 2
forms of robustness checks: 1) Using deaths per thousands of persons as the dependent variable 2)
estimating (4) as a poisson regression and a negative binomial regression.

A.4.1 Cases per thousands of Persons

As shown below the results are qualitatively similar to table 9, in that conditional on a malarial
outbreak, there is no effect of deforestation on malaria related deaths.

Table A.4: Using “Number of Deaths per thousand people” as the dependent variable

(1) (2) (3) (4)
Number of Malaria Deaths Per Thousand People FE FE FE FE

Total Deforestation in the Previous Year (1000 Ha) 8.66e-08 6.53e-08 1.63e-07 1.82e-07
(1.62e-07) (9.59e-08) (1.11e-07) (1.24e-07)

Total Deforestation Two Years Ago (1000 Ha) -7.52e-08 -2.19e-07 1.62e-08
(2.51e-07) (1.68e-07) (1.63e-07)

Observations 21,482 21,482 19,088 19,088
R-squared 0.238 0.237 0.235 0.262

Standard errors clustered at the district level in parentheses. Statistical significance is denoted as
*** p <0.01, ** p <0.05, * p <0.1. Columns (1) - (4) use the same set of controls as Columns (1) -
(4) respectively of table 5.

A.4.2 OLS v. Poisson, Negative Binomial

I demonstrate below the robustness of equation (4) to poisson and negative binomial regressions.
The poisson and negative binomial results are interpreted as semi-elasticities. The key result
doesn’t change with the specification - that conditional on a village having an outbreak of malaria,
deforestation has no impact on malaria related deaths.
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Table A.5: OLS v. Poisson, Negative Binomial

(1) (2)
Number of people who died from malaria Poisson Negative Binomial

Total Deforestation in the Previous Year (1000 Ha) 0.00891 0.00417
(0.0208) (0.0104)

Observations 99,297 100,570

Standard errors clustered at the district level in parentheses. Statistical significance
is denoted as *** p <0.01, ** p <0.05, * p <0.1. All columns use limited controls
as in column (3) of table 5. The poisson and negative binomial coefficients are
interpreted as semi-elasticities.

A.5 Back of the envelope calculations

In this section, I describe the assumptions used in making back of the envelope calculations.

A.5.1 Probability of Outbreak to Infected Individuals

The baseline result is that 1000 hectares of deforestation increases malarial outbreak by 2% in
every village in that district. An outbreak, on average, means that 15 individuals are infected.
There are 250 villages, on average, in each district. That means 1000 hectares of deforestation
results in 0.02x15x250 = 75 additional infected individuals in each district. Between 2001 and
2008, Indonesia lost 600,000 hectares of forest cover each year. That translates to 45,000 additional
infected individuals each year. The same calculations can be repeated at the upper bound estimate
of 4.6%, which translates to 110,00 additional infected individuals each year.

A.5.2 Morbidity Cost of Deforestation

A single bout of malaria costs 10-20 working days 18. That means 1000 hectares translates to
750-1500 sick days. I convert this into sick lives by estimating that individuals have a working
life of 65 years. I then multiply the resulting number of sick lives with the value of a statistical
life ($3, 700, 000). I then divide by 1000 to get the per-hectare morbidity cost associated with
deforestation-induced malaria. The estimates are $123− $610 per hectare.

18See: http://malaria.jhsph.edu/about_malaria/
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